压气机
压气机 |
中文名;压气机 外文名;ompressor 驱动;涡轮 效果;压气 |
压气机(compressor):燃气涡轮发动机中利用高速旋转的叶片给空气作功以提高空气压力的部件。压气机叶轮叶片的前端部分呈弯曲状称为导轮,起作用是将气体无冲击的导入工作叶轮,减小气流冲击损失。小型增压器的压气机叶轮一般将导轮与工作叶轮制成一体。压气机的叶轮出口有扩压器,使气体在叶轮中获得的动能尽可能多地转化为压力。扩压器分为叶片式和缝隙式两种。压气机的外壳有气流的进口和出口。进口一般呈轴向布置,流道略呈渐缩,以减小进气阻力。出口一般设计成流道沿圆周渐扩的蜗壳状,使高速气流在那里继续扩压,提高增压器的总效率。压气机由涡轮驱动,其主要性能参数有:转速、流量、空气流量、增压比和效率等。[1]
目录
机器简介
压气机出口空气总压与进口空气总压之比称为压气机增压比,增压比相同时,理论上所需的压缩功与实际消耗的机械功之比称为压气机效率。压气机可分为离心式与轴流式两大类,兼有两类特点的称为混合式压气机。按气流流入压气机转子叶片的相对速度,压气机又可分为亚音速的、跨亚音速的和超音速三种形式。
机构组成
离心式压气机由导风轮、叶轮、扩压器等组成(图1)。空气由进气道进入压气机、经过与叶轮一起旋转的导风轮的导引进入叶轮。在高速旋转叶轮作用下,空气由叶轮中心被离心力甩向叶轮外缘,压力也逐渐提高,由叶轮流出的空气进入扩压器后速度降低,压力再次提高,最后由出气管流出压气机。 离心式压气机的空气流量为数公斤至数十公斤每秒。亚音速离心式压气机的增压比约为4.5,超音速离心式压气机可达8~10,效率约为0.78。 轴流式压气机 空气在轴流式压气机中主要沿轴向流动。它由转子(又称工作轮,图2有色部分)和静子(又称整流器,图2 无色部分)两部分组成。由一排转子叶片和一排静子叶片组成一级,单级的增压比很小,为了获得较高的增压比,一般都采用如图所示的多级结构。空气在压气机中被逐级增压后,密度和温度也逐级提高。 轴流式压气机的空气流量为几公斤每秒到二百公斤每秒,单级增压比一般约为1.1~2.0,效率约为0.85~0.88。多级轴流式压气机的增压比可达25以上。轴流式压气机的面积小,增压比和效率都高,已广泛用于燃气涡轮发动机中。
性能特性
压气机都是按给定的进气条件、转速、增压比和空气流量设计的,但其工作状态(工作环境的温度、压力、转速和空气流量等)实际上是变化的,压气机在各种工作状态下的性能称为压气机特性。在一定转速下,当压气机的增压比增大到某一数值时,压气机就会进入不稳定的工作状态,很容易发生喘振,使整个系统产生低频大振幅的气流轴向脉动,甚至会发生瞬间气流倒流的现象。压气机喘振可能导致叶片断裂、结构损坏、燃烧室超温和发动机熄火停车。为避免发生喘振可以采取下列措施: ①按转速调节某几级整流叶片的安装角,使流入的气流具有合适的迎角,避免气流分离而造成喘振。 ②将多级压气机分成2个不同转速的转子,分别由高、低压涡轮驱动。有些发动机采用3转子结构。 ③多级轴流式压气机从中间级放气,以增加前面各级的空气流量,避免气流的迎角过大,产生分离,出现喘振。 ④多级轴流式压气机在第一级压气机的机匣上开槽,使第一级工作轮叶片尖端部分的气流通过机匣上的槽道产生回流,减小气流的迎角,这种方法称为机匣处理。 叶片振动 压气机叶片常因振动而产生裂纹甚至断裂。振动分为两类:一类是在周期性外力作用下发生的叶片振动,称为强迫振动。周期性的外力来自工作轮叶片和整流器叶片之间的相互干扰、工作轮叶片的旋转失速等。另一类是由叶片自身的振动以及与相邻叶片自身振动相互干扰而形成的,称为叶片自激振动或叶片颤振。为了避免叶片颤振,工作轮上两相邻叶片可采用不同的厚度,以改变它们的固有频率。
工作原理
涡轮喷气发动机按照“工作循环”工作。它从大气中吸进空气,经压缩和加热这一过程之后,得到能量和动量的空气以高达2000英尺/秒(610米/秒)或者大约1400英里/小时(2253公里/小时)的速度从推进喷管中排出。在高速喷气流喷出发动机时,同时带动压气机和涡轮继续旋转,维持“工作循环”。涡轮发动机的机械布局比较简单,因为它只包含两个主要旋转部分,即压气机和涡轮,还有一个或者若干个燃烧室。然而,并非这种发动机的所有方面都具有这种简单性,因为热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流、以及排出燃气并形成推进喷气流的排气系统的设计工作造成的。
喘振原理
压气机喘振是气流沿压气机轴线方向发生的低频率,高振幅的震荡现象。这种低频率高振幅的气流振荡是一种很大的激振力来源,他会导致发动机机件的强烈机械振动和热端超温,并在很短的时间内造成机件的严重损坏,所以在任何状态下都不允许压气机进入喘振区工作。
喘振现象
发动机的声音由尖哨转变为低沉;发动机的振动加大;压气机出口总压和流量大幅度的波动;转速不稳定,推力突然下降并且有大幅度的波动;发动机的排气温度升高,造成超温;严重时会发生放炮,气流中断而发生熄火停车。因此,一旦发生上述现象,必须立即采取措施,使压气机退出喘振工作状态。
根本原因
由于攻角过大,使气流在叶背处发生分离而且这种气流分离严重扩展至整个叶栅通道。
用途
1、给气动设备以气源 2、(轮胎)充气 3、喷漆、喷涂 4、好氧发酵罐内充气(经过杀菌、过滤)5、等离子切割的气源6、气动工具气源等。 由进气系统、叶轮、扩压器、集气管等四部分组成 在叶轮的中央(入口)吸入空气,离心力使空气以高速自径向进入扩压器通道,在扩压器中,气流被减速,获得压升 转子和扩压器的叶片,有各种形状,根据压力-速度特性要求选用 优点:结构简单,工作可靠,性能比较稳定 缺点:效率较低,迎风面积大 20世纪50年代以后,除小型涡轴、涡桨发动机以外,不再使用离心式压气机 与轴流压气机配合,作为压气机的最后一级 研究中的离心式压气机增压比可以达到12以上 离心压气机最小流量受喘振工况的限制,最大流量受阻塞工况的限制 可以采用变转速、进口节流、出口节流和可调进口导叶等方法进行调节,以扩大运行工况范围 阻塞:气流受到叶片的作用和流线曲率的影响而收缩, 在进口附近形成局部的超声速区,超声速去扩展到整 个喉部截面时,气体流量达最大值,不能再增加的现象
轴流式
气体沿接近轴向流动的压气机,一般又称为轴流鼓风机;动叶加速流体,静叶起扩压器作用,把速度转化成压升。近似于反动式涡轮机的逆过程 轴流压气机广泛用于燃气轮机装置、高炉鼓风、空气分离、天然气液化、重油催化等装置中压送空气和其他气体 轴流式压气机的级= 一列转子叶列+ (紧接着的)一列静子叶列 转子叶片固定在转鼓上,静子叶片固定在气缸上 动叶,动能流体,压力稍稍升高;静子列,流体的压力进一步升高 高压比的装置,压气机级数>20 进口导叶,没有压升,不属于压气机第一级。 目的:气流在进入第一级时获得所需要的流场分布 空气通过轴流压气机不断受到压缩,空气比容减小、密度增加。因而,轴流压气机的通道截面积逐级减小,呈收敛形,压气机出口截面积比进口截面积要小得多.
参考来源
参考资料
- ↑ 压气机基本工作原理、结构及发展动态,豆丁网 , 2002年10月12日