開啟主選單

求真百科

  代數拓撲學1

代數拓撲學是拓撲學中主要依賴代數工具來解決問題的一個分支。同調與同倫的理論是代數拓撲學的兩大支柱(見同調論,同倫論)。

目錄

簡介

廣義同調論滿足除開維數公理之外的所有艾倫伯格-斯廷羅德同調論公理。具有各自幾何背景的各種廣義同調論的出現大大開拓了代數拓撲的領域,提高了用代數方法解決幾何問題的能力。廣義同調的表示定理表明可以在同倫概念的基礎上來建立同調論。目前,重要的廣義同調論有K上同調,協邊上同調,MU上同調,BP上同調,等等。不論同倫或同調,從幾何向代數的過渡總是由函子來實現的。範疇與函子的理論,首先由代數拓撲的需要而產生,已在許多數學分支有廣泛的應用。無論同倫或同調,都是對每個拓撲空間X 對應了一個群F(X),對每一個連續映射?:X →Y 對應了一個同態F(?):F(X)→F(Y),且滿足:①當X=Y,?=恆等自映射時,F(?)=恆等自同構。②若g:Y→Z,則F(g?)=F(g)F(?)。作為用這種函子性質解決拓撲問題的一個例子,考慮?:X →Y 為同胚的情形,這時F(?)與F(?)互為逆同態,從而F(?):F(X)→F(Y)為同構。證明兩個空間X與Y不同胚的一個常用的辦法就是找出一個適當的函子F,使得F(X)不同構於F(Y)。拓撲不變量往往也就是這種函子。同調與同倫是實質上不同的概念,這從簡單的例子就可以看出來。在圖中,設F 是將環面挖一個圓洞所得的曲面。則邊界圓周C 在曲面 F上是同調於0的一維閉鏈。但C 看作F上的環道則不同倫於0。人們很早就知道,不一定可交換的基本群交換化之後就同構於一維同調群。對於同調與同倫之間關係進行深入探討的結果促使同調代數迅速地向前發展起來。這一整套強有力的工具不僅對代數拓撲本身產生巨大影響,也深深地滲入到其他數學分支,如代數、代數幾何、泛函分析、微分方程、複分析等等。 與同調對偶的上同調在許多場合用起來比同調更為得力,這是H.惠特尼在30年代的發現。S.萊夫謝茨對流形上的同調交截理論所作的深入研究啟發人們想到上同調乘積的存在。N.E.斯廷羅德在繼H.霍普夫之後研究有限復形K 到球面Sn的連續映射同倫分類問題時發現了一類上同調運算。上同調群配以上同調運算使得對應於幾何對象的代數對象有更為豐富的結構,從而解決問題的能力也更強。

評價

歐氏空間R,當n=2,4,8時可以定義乘法·, 滿足關係‖x·y‖=‖x‖‖y‖,這裡‖‖表示R的範數;>R(n=2,4,8) 的點分別看作複數、四元數、凱萊數就得到這種乘法。是否還有其他的n值使 R能成為這種賦范代數呢?若 R具有賦范代數結構,則球面 S為H空間。這後一結論又等價於存在霍普夫不變量等於 1的球面映射S→S。 這個問題在同倫論發展的初期就被提出來,當時是個很難下手的問題。與這個問題鄰近的還有球面 S 上至多能有多少個線性獨立的切向量場的問題。1960年前後,J.F.亞當斯徹底解決了這兩個問題。於是知道除開n=2,4,8這幾種已知情形,不可能在R 上引進保持範數的乘法。一個古老的代數難題用拓撲的方法得到了解答。亞當斯還充分利用了同調代數(包括譜序列),上同調運算理論,廣義同調論等方面當時所能提供的工具,使它們充分發揮了威力。這些成就足以說明代數拓撲那時正處於發展的高潮[1]

參考文獻