開啟主選單

求真百科

五邊形,在幾何學中,五邊形是指有五條邊和五個頂點的多邊形,其內角和為540度。

五邊形可以分為凸五邊形和非凸五邊形,其中非凸五邊形包含了凹五邊形和另一種邊自我相交的五角星。最簡單的五角星可藉由將正五邊形的對角線連起來構成。

目錄

完美五邊形

德國數學家卡爾·萊因哈特於1918年發現了五種可以鑲嵌平面的五邊形,從那時起,尋找可以鑲嵌平面的五邊形並將它們分類就成為了一個數學世紀難題。

很多人都認為萊因哈特已經把所有可以鑲嵌平面的五邊形都找出來了,但事實並非如此:1968年,R·B·克什納又發現了三種;1975年,理查德·詹姆斯將紀錄刷新到了9種;同年,聖地亞哥一位50多歲的家庭主婦馬喬里·賴斯。從《科學美國人》雜誌中獲知了詹姆斯的發現,作為一名業餘數學家,賴斯發明了自己的數學符號和方法,並在接下來的幾年內發現了另外四種可以鑲嵌的五邊形。

1985年,羅爾夫·施泰因發現了第14種。似乎這樣的五邊形還會越來越多。不過,在那之後五邊形追蹤行動似乎陷入了低谷。

2015年8月19日,美國華盛頓大學研究團隊發現了一種新的不規則五邊形[1],相互組合後可完全鋪滿平面,不會出現重迭或有任何空隙,是全球第15種能做到此效果的五邊形。而距上次發現類似效果的五邊形已時隔30年,這項發現相當於在數學領域中尋了獲新原子粒子。  

正五邊形

定義

正五邊形,是正多邊形的一種,有將正五邊形的對角線連起來,可以造成一個五角星。組成的圖形里可以找到一些和黃金分割(φ = (√5-1)/2)有關的長度。

性質

  • 正五邊形五邊相等,五個內角相等,都是108°
  • 正五邊形是軸對稱圖形,共有5條對稱軸。
  • 正五邊形的每個外角和每個中心角都是72°[2]
  • 正五邊形有一個外接圓和一個內切圓。
  • 正五邊形是旋轉對稱圖形,旋轉中心就是正五邊形的中心。

視頻

五邊形 相關視頻

五邊形教程講解
標準五邊形這樣畫

參考文獻