Ⅱ型超新星
Ⅱ型超新星(又稱核塌縮超新星)是大質量恆星由內部塌縮引發劇烈爆炸的結果,在分類上是激變變星的一個分支。能造成內部塌縮的恆星,質量至少是太陽質量的9倍。
大質量恆星由核聚變產生能量,與太陽不同的是,這些恆星的質量能夠合成原子量比氫和氦更重的元素,恆星的演化供應和儲存質量更大的核聚變燃料,直到鐵元素被製造出來。但是鐵的核聚變不能產生能量來支撐恆星,所以核心的質量改由電子簡併壓力來支撐。這種壓力來自屬於費米子的電子,在恆星被壓縮時不能在原子核內擁有相同的能量狀態。(參考泡利不相容原理[1])
當鐵核的質量大於1.44倍太陽質量(錢德拉塞卡極限),接着就會發生內爆。快速的收縮使核心被加熱,導致快速的核反應形成大量的中子和中微子。塌縮被中子的短距力阻止,造成內爆轉而向外。向外傳遞的震波有足夠的能量將環繞在周圍的物質推擠掉,形成超新星的爆炸。
Ⅱ型超新星的爆炸有幾種不同的類型,可以依據爆炸後的光度曲線-光度對爆炸後的時間變化圖-來分類。Ⅱ-L超新星顯示出穩定的線性光度下降;而Ⅱ-P超新星在一段正常的光度下降之後,呈現出平緩的下降,才會再持續正常的下降曲線。通常這些塌縮超新星的光譜中也會出現氫的光譜,雖然Ib和Ic超新星也是將氫和氦(Ic超新星)的殼層拋出的核心塌縮大質量恆星,但它們的光譜看起來卻缺乏這些元素。
目錄
形成
質量比太陽大的恆星演化過程遠比太陽複雜。在太陽的核心,氫經由融合成為氦,釋放出的熱能加熱太陽的核心和提供壓力來支撐太陽的殼層阻止核心的塌縮(參考流體靜力平衡[2])。在核心製造和堆積的氦,因為溫度不夠高不足以造成進一步的核聚變。最後,當核心的氫枯竭時,融合開始減緩,同時重力造成核心開始收縮。由收縮提高的溫度足夠造成短期間的氦融合,這在恆星的生命期中通常短於10%。質量低於8倍太陽質量的恆星,由氦融合產生的碳不能做為燃料,恆星將會逐漸冷卻成為白矮星。白矮星如果有鄰近的伴星,則可能成為Ia超新星。
質量更大的恆星,無論如何只要質量足夠,就能在氦燃燒階段結束後創造更高的溫度和壓力,讓核心的碳成為燃料開始進一步的核聚變。當更重的元素在這些大質量恆星的核心形成時,這些元素像洋蔥一樣一層層的堆積着,最外層的是氫元素,包圍着的內層是由氫融合成的氦,氦又包圍着更內層由3氦過程轉換成的碳,越往內層是越重的元素。這些大質量恆星的演化不斷進行重複的步驟:先是在核心的燃燒停止,然後開始收縮使溫度和壓力升高,直到能進行下一階段的核聚變,再點燃阻止核心的收縮。
視頻
Ⅱ型超新星 相關視頻
參考文獻
- ↑ 什麼是泡利不相容原理? ,360個人圖書館,2018-7-31
- ↑ 流體靜力平衡的應用,科學空間,2013-04-14