導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.119.253.133
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 人工神经网络 的原始碼
←
人工神经网络
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://p7.itc.cn/images01/20230927/11afc824b5fe484eb8d07301addec72b.jpeg width="350"></center> <small>[https://www.sohu.com/a/723920860_121719205 来自 搜狐网 的图片]</small> |} '''人工神经网络'''是中国的一个学术名词。 汉字是[[世界]]上比较古老的四大文字之一<ref>[https://www.sohu.com/a/130584341_507440 世界上最古老的四大文字系统~],搜狐,2017-03-27</ref>,也是我们国家优秀文明历史的象征,一直沿用至今,一个简单的文字也道出了我国人们的聪明才智<ref>[https://www.sohu.com/a/73739477_211277 中国汉字文化,道出人生哲理],搜狐,2016-05-06</ref>,哺育了世世代代的中华儿女,成就了中华[[民族]]一代又一代的辉煌。 ==名词解释== 人工神经网络( Artificial Neural Networks, 简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model) ,是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其[[目的]]在于模拟大脑的某些机理与机制,实现某个方面的功能。[[国际]]著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。” 这一定义是恰当的。 人工神经网络的研究,可以追溯到 1957年Rosenblatt提出的感知器模型(Perceptron) 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。 目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。 人工神经网络的特点 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的特点与优越性 人工神经网络的特点和优越性,主要表现在三个方面: 第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。 ==参考文献== [[Category:800 語言學總論]]
返回「
人工神经网络
」頁面