開啟主選單
求真百科
搜尋
檢視 贝叶斯统计 的原始碼
←
贝叶斯统计
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>贝叶斯统计</big> ''' |- | [[File:E824b899a9014c0807dcb796017b02087bf4f41a.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} 英国学者托马斯·贝叶斯在《论有关机遇问题的求解》中提出一种归纳推理的理论,后被一些统计学者发展为一种系统的统计推断方法,称为贝叶斯方法。采用这种方法作统计推断所得的全部结果,构成'''贝叶斯统计'''的内容。认为贝叶斯方法是唯一合理的统计推断方法的统计学者,组成数理统计学中的贝叶斯学派,其形成可追溯到 20世纪 30 年代。到50~60年代,已发展为一个有影响的学派。时至今日,其影响日益扩大。 =='''简介'''== 它是总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于θ的任何统计推断问题中,除了使用样本X所提供的信息外,还必须对θ规定一个先验分布,它是在进行推断时不可或缺的一个要素。贝叶斯学派把先验分布解释为在抽样前就有的关于θ的先验信息的概率表述,先验分布不必有客观的依据,它可以部分地或完全地基于主观信念。例如,某甲怀疑自己患有一种疾病A,在就诊时医生对他测了诸如体温、血压等指标,其结果构成样本X。引进参数θ:有病时,θ=1;无病时,θ=0。X的分布取决于θ是0还是1,因而知道了X有助于推断θ是否为1。按传统(频率)学派的观点,医生诊断时,只使用X提供的信息;而按贝叶斯学派观点,则认为只有在规定了一个介于0与1之间的数p作为事件{θ=1}的先验概率时,才能对甲是否有病(即θ是否为1)进行推断。p这个数刻画了本问题的先验分布,且可解释为疾病A的发病率。先验分布的规定对推断结果有影响,如在此例中,若疾病A的发病率很小,医生将倾向于只有在样本X显示出很强的证据时,才诊断甲有病。在这里先验分布的使用看来是合理的,但贝叶斯学派并不是基于 “p是[[发病率]]”这样一个解释而使用它的,事实上即使对本病的发病率毫无所知,也必须规定这样一个p,否则问题就无法求解。 =='''评价'''== 贝叶斯学派与频率学派争论的焦点在于先验分布的问题。所谓频率学派是指坚持概率的频率解释的统计学家形成的学派。贝叶斯学派认为先验分布可以是主观的,它没有也不需要有频率解释。而频率学派则认为,只有在先验分布有一种不依赖主观的意义,且能根据适当的理论或以往的经验决定时,才允许在统计推断中使用先验分布,否则就会丧失客观性。另一个批评是:贝叶斯方法对任何统计问题都给以一种程式化的解法,这导致人们对问题不去作深入分析,而只是机械地套用公式。贝叶斯学派则认为:从理论上说,可以在一定条件下证明,任何合理的优良性准则必然是相应于一定先验分布的贝叶斯准则,因此每个统计学家自觉或不自觉地都是“贝叶斯主义者”。他们认为,频率学派表面上不使用先验分布,但所得到的解也还是某种先验分布下的贝叶斯解,而这一潜在的先验分布,可能比经过慎重选定的主观先验分布更不合理。其次,贝叶斯学派还认为,贝叶斯方法对统计推断和决策问题给出程式化的解是优点而非缺点,因为它免除了寻求抽样分布,(见统计量)这个困难的数学问题。而且这种程式化的解法并不是机械地套公式,它要求人们对先验分布、损失函数等的选择作大量的工作。还有,贝叶斯学派认为,用贝叶斯方法求出的解不需要频率解释,因而即使在一次使用下也有意义。反之,根据概率的频率解释而提供的解,则只有在大量次数使用之下才有意义,而这常常不符合应用的实际。这两个学派的争论是战后数理统计学发展中的一个特色。这个争论还远没有解决,它对今后数理统计学的发展还将产生影响。<ref>[https://zhuanlan.zhihu.com/p/171756902 贝叶斯统计]搜狗</ref> =='''参考文献'''== [[Category:310 數學總論]]
返回「
贝叶斯统计
」頁面