導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.223.210.249
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 刘文剑 的原始碼
←
刘文剑
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>刘文剑</big>''' |- |<center><img src=https://bkimg.cdn.bcebos.com/pic/e824b899a9014c086e06c39f2d2915087bf40ad15ef4?x-bce-process=image/watermark,image_d2F0ZXIvYmFpa2U5Mg==,g_7,xp_5,yp_5/format,f_auto width="300"></center> <small>[https://baike.baidu.com/item/%E5%88%98%E6%96%87%E5%89%91/14263033?fromModule=lemma_sense-layer#viewPageContent 来自 网络 的图片]</small> |- | style="background: #FF2400" align= center| |- | align= light| |} '''刘文剑''',1966年生。[[山东省]][[栖霞市]]人。1989年获[[山东大学]]理学学士,1992年获山东大学理学[[硕士]],1995年获[[北京大学]]理学[[博士]]。2018年12月起为山东大学讲席[[教授]]<ref>[https://faculty.sdu.edu.cn/liuwenjian/zh_CN/index.htm 刘文剑个人简介 ],山东大学</ref>、[[青岛]]理论与计算科学研究院创院院长<ref>[https://www.mbtechinst.qd.sdu.edu.cn/info/1071/2738.htm 诺贝尔奖得主Arieh Warshel欢迎会暨“分子之间的相互作用与药物设计”学术研讨会举行 ],山东大学, 2019-08-28</ref>。 国际[[量子]][[分子]]科学院[[院士]]<ref>[https://www.nsfc.gov.cn/publish/portal0/tab440/info59302.htm 北京大学刘文剑教授喜获“国际量子分子科学院(International Academy of Quantum Molecular Science)奖” ],北京大学, 2006-05-31</ref>、英国皇家化学会会士、欧洲科学院(European Academy of Sciences)院士、亚太理论与计算化学家协会会士、5个国际奖项获得者。长期从事相对论量子化学理论、方法、算法研究与程序开发,被国际同行誉为相对论量子化学领域的"学术权威"和"关键人物"<ref>[http://www.frontier.qd.sdu.edu.cn/info/1068/1394.htm 刘文剑 ],山东大学, 2019-06-12</ref>。 ==基本信息== 人物说明----国际量子分子科学院院士、英国皇家化学会会士 出生日期----1966年 出生地点----山东省栖霞市 国 籍 ---- 中国 职 业 ---- 教育科研工作者 主要成就----欧洲科学院(European Academy of Sciences)院士 毕业院校----山东大学,北京大学 ==人物简介== 量子化学,相对论量子化学 1995-1997年,德国马普研究所客座科学家。1998-2001年,德国鲁尔-波鸿大学工作。 主讲课程:基础量子化学,高等量子化学 ==研究领域和兴趣== ⒈相对论含时密度泛函理论及GW方法 ⒉多组态自洽场相对论直接微扰理论 ⒊线性标度相对论密度泛函方法 ⒋"相对论性"化学与催化反应机理研究 ⒌ 相对论能带理论 ⒍ 相对论从头算朗之万基态与激发态分子动力学模拟 ⒎ 电、磁性质的相对论密度泛函理论方法 ⒏ 多参考态电子相关方法 ==主要论著== Relativistic Hamiltonians: 1. W. Liu*, Perspectives of relativistic quantum chemistry: the negative energy cat smiles, Phys. Chem. Chem. Phys. 14 (2012) 35-48 (Ranked No. 9 of ``Top 10 Most-read PCCP Articles in November, 2012). 2. W. Kutzelnigg* and W. Liu*, Quasirelativistic theory equivalent to fully relativistic theory, J. Chem. Phys. 123(24) (2005) 241102-1-4 (Rapid Communication). 3. W. Liu* and D. Peng, Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory, J. Chem. Phys. 125(4) (2006) 044102-1-10; (E) 125(14) (2006) 149901-1. 4. D. Peng, W. Liu*, Y. Xiao, and L. Cheng, Making four- and two-component relativistic density functional methods fully equivalent based on the idea of "from atoms to molecule", J. Chem. Phys. 127(10) (2007) 104106-1-15. Relativistic wave functions 5. Z. Li, S. Shao, and W. Liu*, Relativistic explicit correlation: Coalescence conditions and practical suggestions, J. Chem. Phys. 136(14) (2012) 144117-1-23. Relativistic properties 6. Y. Xiao, D. Peng, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding constants: The orbital decomposition approach, J. Chem. Phys. 126(8) (2007) 081101-1-4 (rapid communication). 7. Y. Xiao, W. Liu*, L. Cheng, and D. Peng, Four-component relativistic theory for nuclear magnetic shielding constants: Critical assessments of different approaches, J. Chem. Phys. 126(21) (2007) 214101-1-11. 8. Q. Sun, W. Liu*, Y. Xiao, and L. Cheng, Exact two-component relativistic theory for nuclear magnetic resonance parameters, J. Chem. Phys. 131(8) (2009) 081101-1-4 (Rapid Communication). Time-dependent density functional theory 9. J. Gao, W. Liu*, B. Song, and C. Liu, Time-dependent four-component relativistic density functional theory for excitation energies, J. Chem. Phys. 121(14) (2004) 6658-6666. 10. Z. Li and W. Liu*, Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory, J. Chem. Phys. 133(6) (2010) 064106-1-22. ==其它SCI论文== Relativistic Hamiltonians: 11. W. Liu*, Effective quantum electrodynamics Hamiltonians: A tutorial review, Int. J. Quantum Chem. 2014, DOI: 10.1002/qua.24852. 12. W. Liu*, Advances in relativistic molecular quantum mechanics, Phys. Rep. 537 (2014) 59-89. 13. W. Liu*, Perspective: Relativistic Hamiltonians, Int. J. Quantum Chem. 114 (2014) 983-986. 14. Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular Properties, J. Chem. Phys. 141(5) (2014) 054111-1-21. 15. W. Liu* and I. Lindgren, Going beyond `no-pair relativistic quantum chemistry', J. Chem. Phys. 139(1) (2013) 014108-1-21. 16. Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians, J. Chem. Phys. 137(15) (2012) 154114-1-18. 17. W. Liu*, The `big picture' of relativistic molecular quantum mechanics, in Theory and Applications in Computational Chemistry: The First Decade of the Second Millennium, AIP Conf. Proc. 1456 (2012) 62-66. 18. W. Liu, Editorial on the special issue of Chemical Physics on recent advances and applications of relativistic quantum chemistry, Chem. Phys. 395 (2012) 1 [Guest editor for the special issue in memory of the 9th International Conference on Relativistic Effects in Heavy-Element Chemistry and Physics (REHE-2010), held in Beijing between September 25 and 29, 2010 and chaired by W. Liu]. 19. Q. Sun, W. Liu*, and W. Kutzelnigg*, Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations, Theor. Chem. Acc. 129 (2011) 423-436 (special issue). 20. W. Liu*, Ideas of relativistic quantum chemistry, Mol. Phys. 108(13) (2010) 1679-1706 (invited review; specially highlighted and propagandized by the chief editor). 21. W. Liu* and D. Peng, Exact two-component Hamiltonians revisited, J. Chem. Phys. 131(3) (2009) 031104 -1-4 (Rapid Communication). (Ranked No. 11 on the list of "Top 20 Most Downloaded Articles of J. Chem. Phys." in July, 2009). 22. W. Kutzelnigg* and W. Liu*, Matrix formulation of direct perturbation theory of relativistic effects in a kinetically balanced basis, Chem. Phys. 349(1-3) (2008) 133-146 (special issue). 23. W. Liu* and W. Kutzelnigg*, Quasirelativistic theory. II. Theory at matrix level, J. Chem. Phys. 126(11) (2007) 114107-1-14. 24. W. Kutzelnigg* and W. Liu*, Quasirelativistic theory. I. Theory in terms of a quasirelativistic operator, Mol. Phys. 104(13-14) (2006) 2225-2240 (special issue). 25. 刘文剑*,相对论量子化学新进展(New advances in relativistic quantum chemistry),化学进展 19(6) (2007) 833-851 (特邀综述)。 26. W. Kutzelnigg* and W. Liu*, Response to "Comment on 'quasirelativistic theory equivalent to fully relativistic theory' [J. Chem. Phys. 123, 24, (2005), 241102-1-4]", J. Chem. Phys. 125(10) (2006) 107102-1-2. 27. 王繁,黎乐民*,刘文剑,对含重元素体系的接合二分量-标量相对论密度泛函计算方法,高等学校化学学报 25(2) (2004) 299-303. Wave function theory and analysis 28. W. Liu* and M. R. Hoffmann*, SDS: the `static-dynamic-static' framework for strongly correlated electrons, Theor. Chem. Acc. 133 (2014) 1481-1-12. 29. Z. Li, H. Li, B. Suo, and W. Liu*, Localization of molecular orbitals: From fragments to molecule, Acc. Chem. Res. 47 (2014) 2758-2767. 30. P. K. Tamukong, M. R. Hoffmann*, Z. Li, and W. Liu*, Relativistic GVVPT2 Multireference Perturbation Theory Description of the Electronic States of Y2and Tc2, J. Phys. Chem. A 118 (2014) 1489-1501. 31. S. Mao, L. Cheng, W. Liu, and D. Mukherjee*, A spin-adapted size-extensive state- specific multi-reference perturbation theory (II): Molecular applications, J. Chem. Phys. 136(2) (2012) 024106-1-15. 32. S. Mao, L. Cheng, W. Liu, and D. Mukherjee*, A spin-adapted size-extensive state- specific multi-reference perturbation theory (I): Formal developments, J. Chem. Phys. 136(2) (2012) 024105-1-14. 33. F. Chen*, M. Wei, and W. Liu, On the performance of the open-shell perturbation theory, Sci. China Chem. 54(3) (2011) 446-453. 34. D. Peng, J. Ma, and W. Liu*, On the construction of Kramers paired double group symmetry functions, Int. J. Quantum Chem. 109(10) (2009) 2149-2167 (special issue). 35. S. Wang, W. Liu, and W. H. E. Schwarz*, On relativity, bonding and valence electron distribution, J. Phys. Chem. A 106(5) (2002) 795-803. 36. W. Liu*, W. Kutzelnigg, and Ch. van Wüllen, Relativistic MCSCF by means of quasi-degenerate direct perturbation theory. II. Preliminary application, J. Chem. Phys. 112(8) (2000) 3559-3571. 37. W. Kutzelnigg* and W. Liu, Relativistic MCSCF by means of quasidegenerate direct perturbation theory. I. Theory, J. Chem. Phys. 112(8) (2000) 3540-3558. 38. W. Liu and L. Li*, A method for population and bonding analyses in calculations with extended basis sets, Theor. Chim. Acta 95(3-4) (1997) 81-95. Relativistic properties 39. Y. Xiao, Y. Zhang, and W. Liu*, New experimental NMR shielding scales mapped relativistically from NSR: Theory and application, J. Chem. Theor. Comput. 10 (2014) 600-608. 40. Y. Xiao, Y. Zhang, and W. Liu*, Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals, J. Chem. Phys. 141(16) (2014) 164110-1-16. 41. Y. Xiao and W. Liu*, Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor: Linear molecules, J. Chem. Phys. 139(4) (2013) 034113-1-11. 42. Y. Xiao and W. Liu*, Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor, J. Chem. Phys. 138(13) (2013) 134104-1-13. 43. Q. Sun, Y. Xiao, and W. Liu*, Exact two-component relativistic theory for NMR parameters: General formulation and pilot application, J. Chem. Phys. 137(17) (2012) 174105-1-20【本工作可演化出540种方法】. 44. Y. Xiao, Q. Sun, and W. Liu*, Fully relativistic theories and methods for NMR properties, Theor. Chem. Acc. 131 (2012) 1080-1-17 (invited review for the 50th anniversary issue). 45. L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding: Magnetically balanced gauge-including atomic orbitals, J. Chem. Phys. 131(24) (2009) 244113-1-12. 46. L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for NMR parameters: Unified formulation and numerical assessment of different approaches, J. Chem. Phys. 130(14) (2009) 144102-1-18; (E) 131(1) (2009) 019902-1. 47. W. Kutzelnigg* and W. Liu*, Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation, J. Chem. Phys. 131(4) (2009) 044129-1-16. Time-dependent density functional theory 48. Z. Li, B. Suo, and W. Liu*, First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels, J. Chem. Phys. 141(24) (2014) 244105-1-16. 49. Z. Li and W. Liu*, First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels, J. Chem. Phys. 141(1) (2014) 014110-1-10. 50. J. Liu, Y. Zhang, and W. Liu*, Photoexcitation of light-harvesting C-P-C60 triads: A FLMO-TD-DFT Study, J. Chem. Theory Comput. 10 (2014) 2436-2448. 51. D. Fan, Y. Yi, Z. Li, W. Liu, Q. Peng, and Z. Shuai, Solvent effects on the optical spectra and excited-state decay of triphenylamine-thiadiazole with hybridized local excitation and intramolecular charge transfer, J. Phys. Chem. A dx.doi.org/10.1021/jp5099409. 52. Z. Shuai*, W. Liu, W. Liang, Q. Shi, and H. Chen, Theoretical study of the low-lying electronic excited states for molecular aggregates, Sci. China Chem. 56(9) (2013) 1258-1262. 53. W. Liu* and J. Ma, Theoretical study of low-lying excited states of molecular aggregates. I. Development of linear-scaling TD-DFT, Sci. China Chem. 56(9) (2013) 1263-1266. 54. Z. Li, B. Suo, Y. Zhang, Y. Xiao, and W. Liu*, Combining spin-adapted open-shell TD-DFT with spin-orbit coupling, Mol. Phys. 111(24) (2013) 3741-3755. 55. Z. Li and W. Liu*, Theoretical and numerical assessments of spin-flip time-dependent density functional theory, J. Chem. Phys. 136(2) (2012) 024107-1-14. 56. Z. Li and W. Liu*, Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation, J. Chem. Phys. 135(19) (2011) 194106-1-14; (E) 138(2) (2013) 029904. 57. Z. Li, W. Liu*, Y. Zhang, and B. Suo, Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application, J. Chem. Phys. 134(13) (2011) 134101-1-22. 58. F. Wu, W. Liu*, Y. Zhang, and Z. Li, Linear scaling time-dependent density functional theory based on the idea of "from fragments to molecule'', J. Chem. Theor. Comput. 7 (2011) 3643-3660. 59. J. Gao, W. Zou, W. Liu*, Y. Xiao, D. Peng, B. Song, and C. Liu, Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel, J. Chem. Phys. 123(5) (2005) 054102-1-13. 60. D. Peng, W. Zou, and W. Liu*, Time-dependent quasirelativistic density functional theory based on the zeroth-order regular approximation, J. Chem. Phys. 123(14) (2005) 144101-1-13. The BDF program package 61. W. Liu*, F. Wang, and L. Li, The Beijing density functional (BDF) program package: Methodologies and applications, J. Theor. Comput. Chem. 2(2) (2003) 257-272 (invited review). 62. W. Liu*, G. Hong, D. Dai, L. Li, and M. Dolg, The Beijing 4-component density functional program package (BDF) and its application to EuO, EuS, YbO, and YbS, Theor. Chem. Acc. 96(2) (1997) 75-83. Electronic structure of d/f-compounds 63. Y. Zhang, W. Xu, Q. Sun, W. Zou, and W. Liu*, Excited states of OsO4: A comprehensive time-dependent relativistic density functional theory study, J. Comput. Chem. 31(3) (2010) 532-551. 64. W. Xu, J. Ma, D. Peng, W. Zou, W. Liu*, and V. Staemmler, Excited states of ReO4: A comprehensive time-dependent relativistic density functional theory study, Chem. Phys. 356(1-3) (2009) 219-228 (special issue). 65. W. Xu, Y. Zhang, and W. Liu*, Time-dependent relativistic density functional study of Yb and YbO, Sci. China Chem. 52(11) (2009) 1945-1953; 许文华,张勇,刘文剑*,Yb、YbO电子激发态的相对论含时密度泛函理论研究,中国科学B 39(11) (2009) 1484-1493。(special issue) 66. W. Zou* and W. Liu*, Comprehensive ab initio calculation and simulation on the low-lying excited states of TlX (X = F, Cl, Br, I, and At), J. Comput. Chem. 30(4) (2009) 524-539. 67. W. Zou and W. Liu*, Theoretical study on the low-lying electronic states of NiH and NiAt, J. Comput. Chem. 28(14) (2007) 2286-2298. 68. W. Zou and W. Liu*, Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI, J. Chem. Phys. 124(15) (2006) 154312-1-16. 69. W. Zou and W. Liu*, Extensive theoretical studies on the low-lying electronic states of indium monochloride cation, InCl, J. Comput. Chem. 26(1) (2005) 106-113. 70. F. Wang and W. Liu*, Benchmark four-component relativistic density functional calculations on Cu2, Ag2, and Au2, Chem. Phys. 311(1-2) (2005) 63-69 (special issue). 71. F. Wang and W. Liu*, Comparison of different polarization schemes in open-shell relativistic density functional calculations, J. Chin. Chem. Soc. (Taipei) 50(3B) (2003) 597-606 (Special issue). 72. W. Liu*, Ch. van Wüllen, F. Wang, and L. Li, Spectroscopic constants of MH and M2 (M = Tl, E113, Bi, E115): Direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory, J. Chem. Phys. 116(9) (2002) 3626-3634. 73. W. Liu* and R. Franke*, Comprehensive relativistic ab initio and density functional theory studies on PtH, PtF, PtCl, and Pt(NH3)2Cl2, J. Comput. Chem. 23(5) (2002) 564-575. 74. X. Cao, W. Liu, and M. Dolg*, Molecular structure of diatomic lanthanide compounds, Sci. China Chem. 45(1) (2002) 91-96; 曹晓燕,刘文剑,M. Dolg*,双原子镧系化合物分子结构(Molecular structure of diatomic lanthanide compounds),中国科学B 31(6) (2001) 481-486。 75. W. Liu*, Ch. van Wüllen, Y.-K. Han, Y.-J. Choi, and Y.-S. Lee, Spectroscopic constants of Pb and eka-lead compounds: Comparison of different approaches, Adv. Quantum Chem. 39 (2001) 325-355. 76. M. Dolg*, W. Liu, and S. Kalvoda, Performance of relativistic density functional and ab initio pseudopotential approaches for systems with high spin multiplicities. Gadolinium diatomics GdX (X = H, N, O, F, P, S, Cl, Gd), Int. J. Quantum Chem. 76(3) (2000) 359-370. 77. B. Metz, M. Schweizer, H. Stoll*, M. Dolg, and W. Liu, A small-core multiconfiguration Dirac-Hartree-Fock-adjusted pseudopotential for Tl: application to TlX (X = F, Cl, Br, I), Theor. Chem. Acc. 104(1) (2000) 22-28. 78. W. Liu* and Ch. van Wüllen, Comment on "four-component relativistic density functional calculations of heavy diatomic molecules [J. Chem. Phys. 112, 8, (2000),3499-3506]", J. Chem. Phys. 113 (6) (2000) 2506-2507. 79. W. Liu and Ch. van Wüllen*, Spectroscopic constants of eka-gold (element 111) diatomic compounds: The importance of spin-orbit coupling, J. Chem. Phys. 110(8) (1999) 3730-3735; (E) 113 (2) (2000) 891. 80. W. Liu, R. Franke*, and M. Dolg, Relativistic ab initio and density functional theory calculations on the mercury fluorides: Is HgF4 thermodynamically stable? Chem. Phys. Lett. 302(3-4) (1999) 231-239. 81. W. Liu* and M. Dolg, Benchmark calculations on lanthanide atoms: Calibration of ab initio and density functional methods, Phys. Rev. A 57(3) (1998) 1721-1728. 82. W. Liu, W. Küchle, and M. Dolg*, Ab initio pseudopotential and density functional all-electron study of ionization and excitation energies of actinide atoms, Phys. Rev. A 58(2) (1998) 1103-1110. 83. W. Liu*, M. Dolg, and L. Li, Fully relativistic density functional calculations of the ground and excited states of Yb, YbH, YbF, and YbO, J. Chem. Phys. 108(7) (1998) 2886-2895. 84. W. Liu, M. Dolg*, and P. Fulde, Calculated properties of lanthanocence anions and the unusual electronic structure of their neutral counterparts, Inorg. Chem. 37(5) (1998) 1067-1072. 85. M. Koga*, W. Liu, M. Dolg, and P. Fulde, Orbital localization and delocalization effects in the U 5f2 configuration: Impurity problem, Phys. Rev. B 57(17) (1998) 10648-10654. 86. W. Liu, M. Dolg*, and P. Fulde, Low-lying electronic states of lanthanocenes and actinocenes: M(C8H8)2(M = Nd, Tb, Yb, U), J. Chem. Phys. 107(9) (1997) 3584-3591. Miscellaneous computations 87. S. Yao, W. Xu, A. C. Johnston-Peck, F. Zhao, Z. Liu, S. Luo, S. D. Senanayake, A. Martínez-Arias, W. Liu* and J. A. Rodriguez*, Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction, Phys. Chem. Chem. Phys. 16 (2014) 17183-17195. 88. S. Wang, J. Liu, L. Yuan, Z. Cui, J. Peng, J. Li, M. Zhai* and W. Liu*, Towards understanding the color change of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide during gamma irradiation: an experimental and theoretical study, Phys. Chem. Chem. Phys. 16 (2014) 18729-18735. 89. A. Liu, Q. Sun, J. Cui, J. Zheng, W. Liu*, and X. Wan*, Tuning Mesomorphic Properties and Handedness of Chiral Calamitic Liquid Crystals by Minimal Modification of the Effective Core, Chirality 23 (2011) E74-E83. 90. W. Zou, Y. Liu, W. Liu, T. Wang, and J. E. Boggs*, He@Mo6Cl8F6: A stable complex of Helium, J. Phys. Chem. A 114(1) (2010) 646-651. 91. X. Li*, F. He, K. Fu, and W. Liu, Solvation energy of nonequilibrium polarization: Old question, new answer, J. Theor. Comput. Chem. 9 (2010) 23-27. 92. J. Deng, N. Song*, W. Liu, Q. Zhou, and Z. Wang, Towards near-infrared chiroptically switching materials: Theoretical and experimental studies on Viologen-containing 1,1'-Binaphthyls, ChemPhysChem 9(9) (2008) 1265-1269 (Communications). 93. S. Lü, W. Liu*, and X. Li, Ab initio investigation on electron transfer in molecular electronic devices: A minimal model study, Chem. Phys. Lett. 439(1-3) (2007) 85-90. 94. C. Xiao, N. Yan, M. Zou, S. Hou, Y. Kou*, W. Liu*, and S. Zhang, NO2catalyzed deep oxidation of methanol: Experimental and theoretical studies, J. Mol. Catal. A: Chemical 252(1-2) (2006) 202-211. 95. S. Lü, X. Li*, and W. Liu*, Electronic coupling matrix elements of U-shaped donor-bridge-acceptor molecules and influence of mediated benzene solvent, Chem. Phys. Lett. 414(1-3) (2005) 71-75. 其它 96. 刘文剑*,《理论化学原理与应用》第二章:相对论量子化学基本原理及相对论含时密度泛函理论(Principles of relativistic quantum chemistry and time-dependent relativistic density functional theory)(帅志刚,邵久书等编著,科学出版社,北京,2008),68-109。 97. W. Liu*, F. Wang, and L. Li, Relativistic density functional theory: The BDF program package in Recent Advances in Relativistic Molecular Theory, Recent Advances in Computational Chemistry, Vol. 5, edited by K. Hirao and Y. Ishikawa (World Scientific, Singapore, 2004), 257-282. 98. W. Liu*, F. Wang, and L. Li, Recent advances in relativistic density functional methods in Encyclopedia of Computational Chemistry,edited by P. von Ragué Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, UK, 2004) (invited review). ==参与编辑的期刊== 1) Handbook of Relativistic Quantum Chemistry (three volumes), edited by Wenjian Liu (Springer-Verlag GmbH, to be printed in 2016). 2) Chemical Physics, Recent advances and applications of relativistic quantum chemistry, Vol. 395, 2012, edited by Wenjian Liu (Elsvier, special issue for REHE-2010). 3) Chemical Physics, Recent advances in electron correlation methods and applications, Vol. 401, 2012, edited by Wim Klopper, Wenjian Liu, and Sourav Pal (Elsvier, special issue in honor of Prof. Debashis Mukherjee's 65th birthday). 4) Journal of Theoretical and Computational Chemistry, Vol. 5, 2006, edited by Wenjian Liu and Lemin Li (World Scientific, Singapore, in honor of Prof. Guangxian Xu's 60 year teaching and researching). ==参考来源== [[Category:教授]] [[Category:化学家]]
返回「
刘文剑
」頁面